Math 125: Calculus II - Dr. Loveless

Essential Course Info

My Course Website:
Homework Log-In (use UWNetID):
Directions for Webassign code purchase:
Math Department 125 Course Page:
math.washington.edu/~aloveles/ webassign.net/washington/login.html math.washington.edu/webassign math.washington.edu/~m125/

First week to do list
1.Read 4.9, 5.1, 5.2, and 5.3 of the book. Start attempting HW.
2. Print off the "worksheets" and bring them to quiz sections.

Today

- Syllabus/Intro
- Section 4.9
- antiderivatives

Week 1 assignments
Closing time is always 11 pm .

- HW 1A,1B closes Wed
- HW 1C closes Fri (covers 4.9, 5.1, and 5.2)
Expect 6-8 hrs of work, start today!

What we will do in this course:

We learn integral calculus which provides the essential tools for engineering, science and economics.

1. Ch. 5 - Defining the Integral

- Def'n and basic techniques

2. Ch. 6 - Basic Integral Applications

- Areas, Volumes
- Average Value
- Measuring Work

3. Ch. 7 - Integration Techniques

- by parts, trig, trig sub, partial frac. skills.

4. Ch. 8-9 - More Applications

- Arc Length, Center of Mass
- Differential Equations

Entry Task: Differentiate

1. $\quad F(x)=\frac{7}{x^{10}}-5 \sqrt{x^{3}}+4 \ln (x)$
2. $G(x)=e^{6 x}+5 \tan (x)+\pi$
3. $\quad H(x)=2 \tan ^{-1}(x)-e$
4. $\quad J(x)=x^{3} \cos (4 x)+\ln (2)$

4.9 Antiderivatives

Def' n : If $g(x)=f^{\prime}(x)$, then we say $g(x)=$ "the derivative of $f(x)$ ", and $f(x)=$ "an antiderivative of $g(x)$ "

Example:

Give an antiderivative of

$$
g(x)=x^{2}
$$

Examples (you do):

Find the general antiderivative of

1. $f(x)=x^{6}$
2. $g(x)=\cos (x)+\frac{1}{x}+e^{x}+\frac{1}{1+x^{2}}$
3. $h(x)=\frac{5}{\sqrt{x}}+\sqrt[3]{x^{2}}$
4. $r(x)=\frac{x-3 x^{2}}{x^{3}}$

Initial Conditions

There is no way to know what " C " is
unless we are given additional
information. Such information is
called an initial condition.
Example: $f^{\prime}(x)=e^{x}+4 x$ and

$$
f(0)=5
$$

Find $f(x)$.

Example: $f^{\prime \prime}(x)=15 \sqrt{x}$, and
$f(1)=0, f(4)=1$
Find $f(x)$.

Example:

Ron steps off the 10 meter high dive at his local pool. Find a formula for his height above the water. (Assume his acceleration is a constant $9.8 \mathrm{~m} / \mathrm{s}^{2}$ downward)

5.1 Defining Area

Calculus is based on limiting processes that "approach" the exact answer to a rate question.

In Calculus I, you defined

$$
\begin{aligned}
\mathrm{f}^{\prime}(\mathrm{x}) & =\text { 'slope of the tangent at } x^{\prime} \\
& =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
\end{aligned}
$$

In Calculus II, we will see that antiderivatives are related to the area 'under' a graph

$$
=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

Calc. I
Visual:

Calc. II Visual:

$R_{10}=0.3025$

Riemann sums set up:
We build a procedure to get better and better approximations of the area "under" $f(x)$.

1. Break into n subintervals.

$$
\Delta x=\frac{b-a}{n} \text { and } x_{i}=a+i \Delta x
$$

2. Draw n rectangles.

Area of each rectangle $=$ $($ height $)($ width $)=f\left(x_{i}^{*}\right) \Delta x$
3. Add up rectangle areas.

Example:

Approx. the area under $f(x)=x^{3}$
from $\mathrm{x}=0$ to $\mathrm{x}=1$ using $\mathrm{n}=3$
subdivisions and right-endpoints to find the heights.

You do:

Approx. the area under $f(x)=x^{3}$
from $\mathrm{x}=0$ to $\mathrm{x}=1$ using $\mathrm{n}=4$
subdivisions and left-endpoints to find the heights.

I did this again with 100
subdivisions, then 1000 , then 10000.

Here is a summary of my findings:

n	R_{n}	L_{n}
4	0.390625	0.140625
5	0.36	0.16
10	0.3025	0.2025
100	0.255025	0.245025
1000	0.25050025	0.24950025
10000	0.2499500025	0.2500500025

General Pattern: (right-endpoint) For $f(x)=x^{3}$ on $\mathrm{x}=0$ to $\mathrm{x}=1$.

$$
\begin{aligned}
& \Delta x=\frac{1-0}{n}=\frac{1}{n} \\
& x_{i}=0+i \frac{1}{n}=\frac{i}{n}
\end{aligned}
$$

Height $=f\left(x_{i}\right)=x_{i}^{3}=\left(\frac{i}{n}\right)^{3}$
Area $=f\left(x_{i}\right) \Delta x=x_{i}^{3} \Delta x=\left(\frac{i}{n}\right)^{3} \frac{1}{n}$

Adding up the rectangle areas
Sum $=\sum_{i=1}^{n} x_{i}^{3} \Delta x=\sum_{i=1}^{n}\left(\frac{i}{n}\right)^{3} \frac{1}{n}$
Exact Area $=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{i}{n}\right)^{3} \frac{1}{n}$

Definition of the Definite Integral

 We define the exact area "under" $f(x)$ from $x=a$ to $x=b$ curve to be$$
\text { where } \quad \begin{aligned}
\Delta x & =\frac{b-a}{n} \text { and } \\
x_{i} & =a+i \Delta x
\end{aligned}
$$

We call this the definite integral of $f(x)$ from $x=a$ to $x=b$, and we write

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

Example: Write down this definition for the function $f(x)=\sqrt{x}$ on the interval $x=5$ to $x=7$.

